
Scalable Software Infrastructure for Integrating

Supercomputing with Volunteer Computing and

Cloud Computing

Ritu Arora1, Carlos Redondo2, and Gerald Joshua3

1 Texas Advanced Computing Center, University of Texas at Austin, TX, USA
rauta@tacc.utexas.edu

2 University of Texas at Austin, TX, USA
carlos.red@utexass.edu

3 University of Texas at Austin, TX, USA
gerald.joshua153@utexass.edu

Abstract.

Volunteer Computing (VC) is a computing model that uses donated com-
puting cycles on the devices such as laptops, desktops, and tablets to do
scientific computing. BOINC is the most popular software framework
for VC and it helps in connecting the projects needing computing cy-
cles with the volunteers interested in donating the computing cycles on
their resources. It has already enabled projects with high societal impact
to harness several PetaFLOPs of donated computing cycles. Given its
potential in elastically augmenting the capacity of existing supercom-
puting resources for running High-Throughput Computing (HTC) jobs,
we have extended the BOINC software infrastructure and have made it
amenable for integration with the supercomputing and cloud comput-
ing environments. We have named the extension of the BOINC software
infrastructure as BOINC@TACC, and are using it to route *qualified*
HTC jobs from the supercomputers at the Texas Advanced Computing
Center (TACC) to not only the typically volunteered devices but also
to the cloud computing resources such as Jetstream and Chameleon.
BOINC@TACC can be extremely useful for those researchers/scholars
who are running low on allocations of compute-cycles on the supercom-
puters, or are interested in reducing the turnaround time of their HTC
jobs when the supercomputers are over-subscribed. We have also de-
veloped a web-application for TACC users so that, through the conve-
nience of their web-browser, they can submit their HTC jobs for run-
ning on the resources volunteered by the community. An overview of the
BOINC@TACC project is presented in this paper. The BOINC@TACC
software infrastructure is open-source and can be easily adapted for use
by other supercomputing centers that are interested in building their
volunteer community and connecting them with the researchers needing
multi-petascale (and even exascale) computing power for their HTC jobs.



1. INTRODUCTION

Due to the constantly increasing need for running large-scale applications, the
supercomputing resources at open-science data centers can be over-subscribed at
times, and when this happens, the turnaround time of small High-Throughput
Computing (HTC) jobs can be longer than expected. To reduce the turnaround
time of the small HTC jobs in such situations, these jobs can be routed to exter-
nal computing resources. Such routing depends upon the users’ consent to take
advantage of the external resources, and the characteristics of their jobs, such
as, the 1) anticipated job completion time, 2) amount of data to be ingested or
produced during the job run, 3) amount of memory needed during run-time, and
the 4) type of hardware resources needed (i.e., CPU or GPU).

The researchers may also be interested in using the external computing resources
when they are running low on the compute-time granted to them through a
competitive resource allocation process. Typically, it is hard to get 100% of the
requested allocation of compute-time on the supercomputers that are in high-
demand. Therefore, users with unsatisfied computational needs have to find ad-
ditional resources to supplement their allocations. The additional computing
resources can be an agglomeration of laptops, desktops, tablets, and the VMs in
the cloud, and the computing cycles on these resources can be donated by the
volunteers in the community, thereby, making the Volunteer Computing (VC)
model relevant to the supercomputing user community.

We formally define VC as a computing model that uses donated computing
cycles on devices such as laptops, desktops, and tablets to do scientific comput-
ing. BOINC [1] is the most popular software framework for VC and helps in
connecting the projects needing computing cycles with the volunteers interested
in donating the computing cycles on their resources. It has a client-server archi-
tecture, and has already enabled projects with high societal impact to harness
several PetaFLOPs of donated computing cycles.

Given its potential in elastically augmenting the capacity of existing supercom-
puting resources for running HTC jobs, we have extended the BOINC software
infrastructure and have made it amenable for integration with the supercom-
puting and cloud computing environments. We have named the extension of
the BOINC software infrastructure as BOINC@TACC [2], and are using it to
route *qualified* HTC jobs from the supercomputers at the Texas Advanced
Computing Center (TACC) to not only the typically volunteered devices but
also to the cloud computing resources such as Jetstream [3] and Chameleon [4].
We have developed a decision-support system for helping users de-
termine whether or not their jobs are qualified for running through
BOINC@TACC. Depending upon the hardware requirements of the BOINC
jobs, the routing scripts also determine if these jobs should be run in the cloud
or on other volunteered resources.



A high-level overview of BOINC@TACC software infrastructure is shown in
Figure 1. As can be be noticed from this Figure, running jobs through the
BOINC@TACC software infrastructure involves Docker [5], which is a commonly
used tool for the containerization of applications. Both community code and
users’ home-grown applications can be containerized and made portable across
different hardware resources and environments by using Docker. As a new func-
tionality, we have developed a framework for automatically creating
Docker images of user’s home-grown code , thereby, freeing them from the
burden of climbing the learning curve for Docker and creating the Docker images
of their applications. A complete overview of this system is available in Figure
2 below.

Additionally, we have developed the software components for running
BOINC jobs on the VMs in the cloud. These component can also be use-
ful for cloud bursting [6] and routing not just the HTC jobs but also the High
Performance Computing (HPC) jobs from the oversubscribed resources to the
relatively underutilized systems at the supercomputing centers. In order to sup-
port the cloud bursting mechanism, we have developed a new client
software component for interacting with the BOINC server, and also
a protocol for routing jobs and information between the new client
and the BOINC server.

The BOINC@TACC software infrastructure has been made General
Data Protection Regulation (GDPR) [7] compliant. To ensure data pri-
vacy and security, our instance of the BOINC server is run on a private cloud
computing infrastructure. For enabling TACC users in accessing BOINC@TACC
through the project website, we have also integrated the TACC user database
with the BOINC@TACC software infrastructure.

We are iteratively refining the BOINC@TACC infrastructure on the basis of
the feedback from the researchers, volunteers, and the developers in the com-
munity. In the rest of this paper, we describe the details of the BOINC@TACC
infrastructure. We also describe the process of submitting jobs to the BOINC
server through the convenience of the web-browser or through the command-line
interface. We include a description of the evaluation metrics, and future work.
The BOINC@TACC infrastructure can be adapted by different supercomputing
centers in their pursuit of multi-petascale (or even exascale computing).

2. SOFTWARE AND IMPLEMENTATION

The key software components in the BOINC@TACC infrastructure are its front-
end (command-line and web-based), BOINC client-server, special client for sup-
porting cloud bursting, framework for automatically creating Docker images
of users’ custom-code, Docker images of the popular community applications,
scripts, APIs, databases, job taxonomy, accounting system, and email notifica-





tion system. The majority of the implementation work required for this project
was done using PHP/Javascript/HTML/CSS, Python, Bash scripts, Redis and
MySQL database management systems.

We describe each of the aforementioned components in this section and provide
an overview of the key software components/extensions that we have developed
for integrating VC with supercomputing.

1. Front-End: The BOINC@TACC software infrastructure can be used
for submitting jobs via two interfaces that were developed in the project:
command-line and web-based. The command-line interface can be used on
TACC supercomputers, and is basically a decision-support system that helps
the users in determining whether their jobs are qualified for running through
the BOINC@TACC infrastructure or not. If, as a part of the decision-making,
it is determined that a job is not suitable for being routed to the BOINC
server (perhaps because it is data-intensive or memory-intensive), then it
is run directly on the TACC supercomputers. However, if a job is qualified
for being routed to the BOINC server, there is further automatic decision-
making involved to determine the type of resource on which the job should
be scheduled, such as, a cloud computing resource or another volunteered
resource that may be a laptop, desktop, or a tablet. Supporting cloud com-
puting resources is especially important to meet the diverse hardware needs
of the current TACC user-community. There is a high-demand for GPUs and
some demand for FPGAs. The cloud computing resources can help in elasti-
cally supplementing the volunteered resources and provide new capabilities.

The web interface supports job submissions through the convenience of the
web-browser, and mimics the functionality of the command-line interface.
However, before a researcher can use the web interface, they are required to
run a registration script from a TACC supercomputer (viz., Stampede2 or
Lonestar5) and get validated. The registration scripts are organization spe-
cific and can only be run from TACC systems. The web interface can also
be used to track the status of a submitted job or to access any other feature
provided by BOINC.

2. Databases: There are two types of database management systems used
in the BOINC@TACC software implementation: MySQL and Redis. BOINC
provides a MySQL database by default. This database stores the information
related to the volunteers’ account, in addition to the job statistics, data re-
lated to the messageboards, volunteered devices, and the status of the jobs.
We have made several changes to the default MySQL database to anonymize
user information while maintaining the compatibility of the data with the
existing software implementation. All usernames have been anonymized in
compliance with GDPR and are stored as such in the database. No one other
than the user and the administrator has access to the information related



to user accounts. The users can choose to delete all the data, and we can
guarantee its complete erasure from our systems.

Redis is an in-memory, key-value based database. It is used for data-caching
and saving basic job information, such as job IDs and the image tags, while
the complete information is stored in the MySQL database. Redis is also
used for automatic Dockerfile construction, setting triggers that alert the
internal daemon to begin the Docker build, and select the files to use. Redis
is also used to store job classification tags for each job run.

3. BOINC client-server: The entire BOINC server architecture is composed
of an Apache server, a MySQL database, and back-end programs/tools, and
all of these components run as separate Docker containers [8] but are made to
start/stop together using Docker compose [9]. The project’s state is made to
persist using shared Docker volumes [10]. All the default features of BOINC
(such as messageboards, job scheduler, and job statistics) have been main-
tained in the BOINC@TACC project. The default BOINC client, when in-
stalled on a volunteered device, automatically polls the server to check for
available jobs, and runs them if the volunteered device is underutilized. The
BOINC client also automatically returns the job results to the BOINC server.
The client notifies the BOINC server if there are any errors while processing
a job. Any job that fails to run due to the error on the volunteered hardware
or software is considered as incomplete and is resubmitted.

One of the default requirements for running the Docker-based BOINC appli-
cations is the availability of VirtualBox on the volunteered resources. When
the Docker containers are run inside the VirtualBox installed on the VMs
in the cloud, they are unable to access the GPUs due to the hypervisor set-
tings. While a Peripheral Component Interconnect (PCI) passthrough can
be used to overcome this limitation, it is still in experimental stage, is dif-
ficult to set-up, and has strict hardware requirements that would make it
difficult to uniformly use it on different volunteered resources. Moreover, on
the Linux based resources/VMs, Docker containers can be run directly with-
out requiring VirtualBox as long as Docker is installed. Therefore, in order
to support Dockerized BOINC applications that need to access the GPUs,
and to circumvent the requirement of installing VirtualBox on Linux-based
resources (especially in the cloud), we have developed the Automatic
Docker Task Distribution Protocol (ADTD-P).

ADTD-P relies on the availability of Docker on the VMs for running CPU jobs,
and requires Nvidia Docker 2 package [11] for running GPU jobs that are sub-
mitted through the BOINC server. Using ADTD-P does not require any modi-
fication to the applications themselves. The functionality of ADTD-P is further
described as follows:



1. On the server side, ADTD-P saves Docker images of the applications to
be run as a BOINC job in a *tar.gz file. It then creates a JSON file with the
information about the job, such as, whether or not it requires GPU support.
The Docker image and the JSON file are compressed and saved together as
a packet to be shipped as a BOINC job.

2. It should also be noted that ADTD-P is not exclusive for BOINC usage
and can be used for submitting other types of volunteer jobs as long as they
are packaged using docker images. Clients can also be made to avoid GPU
jobs if the Nvidia Docker 2 package is not installed or CUDA jobs are not
desired. We provide an automatic installer for ubuntu/debian systems.

3. When a job has completed - successfully or with a failure - the client will
return a *tar.gz file containing the job information logs in a JSON format
and the output files to the server. Both these files are then forwarded to the
users. In case a job fails due to the issues not related to BOINC, the error
logs are also sent to the users. The Docker container and the image used are
then deleted from the client.

4. ADTD-P clients also maintain a database to locally track the jobs that
they process. This information is stored in the Redis database connected
to the ADTD-P server and contains processing times, commands run, job
status, and job IDs. The job statistics can be directly retrieved from Redis,
but ADTD-P also provides a command-line interface [12].

5. Docker images: We maintain Docker images of multiple community ap-
plications such as, Autodock-vina, GROMACS, and OpenSees in Docker
Hub. Users can either choose to run these applications that are maintained
by us, or provide Docker images created by them or someone else. We have
also developed a framework for supporting automatic creation of Docker
images from source code and this framework is known as MIDAS (the Mul-
tiple Input Docker Automation System). Users can use MIDAS either in the
command-line mode or through the web interface to generate Docker images
from their source code and specifications. The user may select the OS to
be utilized and and can also provide configuration options as they deem fit.
Users are provided root access to the Docker image. If the image is built
successfully, the researchers are notified via email and sent a copy of both
the Dockerfile used to build the Docker image of their code, and a hyperlink
to download the image. However, if the build fails, the researchers are noti-
fied and their job is not processed. To enable running the Docker images on
volunteered resources, we use the boinc2docker tool [13]. This tool helps in
transforming Docker images and their respective commands into a Virtual-
Box application. A complete diagram of MIDAS functioning can be seen in
Figure 3 below.



6. Routing jobs from the BOINC server to the BOINC clients or directly to
the VMs in the cloud: Jobs that the server processes using the boinc2docker
tool are distributed to the volunteer devices using BOINC’s default sched-
uler, which will select an appropriate volunteer host based on the job require-
ments (e.g., memory needs and the computation time required). Jobs sub-
mitted through the ADTD-P protocol, however, are processed on the First
Come First Served (FCFS) basis, and are processed by the first ADTD-P
client requesting a job. However, ADTD-P clients can have their own re-
quirements, such as restricting GPU jobs.

7. Scripts for gathering results from the volunteered resources: BOINC
jobs processed through BOINC’s standard scheduler return the results using
BOINC’s default APIs through the BOINC client. These results are then
added to a directory on the BOINC server. ADTD-P clients also return the
results and a complete log of all executed commands to this directory.

8. Email notifications, job-tracking, and job statistics: We also support a
job history page through which the researchers can track the status of the
jobs submitted through the web interface. BOINC@TACC is also integrated
with an email server for notifying the researchers about their jobs, results,
and account information.

9. Job Classifier (Tagging): All jobs run using BOINC@TACC can be
tagged - classified with none, one, or multiple science fields and subfields.
Information about these tags is stored in a Redis database.

10. Accounting System: This system can be used by the organizations to
check and limit the allocation of compute time and storage space for the re-
searchers using volunteered resources. When a user signs up, allocation gets
automatically assigned according to the parameters set by the organization.
More than one organization can be served by a BOINC server instance and
each one may provide different storage requirements and permissions to its
users. In order for an individual to use the BOINC@TACC functionality,
they must belong to an allowed organization which is TACC.

11. Information and System Security: Only researchers with both valid
TACC credentials and an active TACC allocation are allowed to submit
jobs through BOINC@TACC. Once a user has registered for BOINC@TACC
project by running a script (provided by us), the system will automatically
generate a token for him/her. This token is used to internally map the users
and the jobs submitted by them.

The BOINC@TACC project is GDPR compliant. To comply with GDPR,
as a default setting, it was important to anonymize the volunteers’ data pre-
sented on the leaderboard accessible through the web interface. If users wish
to, and give their explicit consent, we can easily display their chosen screen-



names instead of the anonymized names. GDPR also mandates presenting
the terms and conditions for joining the project in the simplest possible man-
ner. The project team keeps track of all the places where the volunteers’ data
is kept so that in the event the volunteers need to delete their accounts, all
their information can be deleted with certainty. This feature however may
need to be rethought/reworked once the project is integrated with the Sci-
ence United web application [14] in the future.

The default BOINC APIs sanitize all files submitted to ensure that there
are no hidden commands within the file-names. The BOINC@TACC server is
deployed on a private VMWare cloud computing system instead of Jetstream
for reliability, security, and to ensure access to TACC’s internal LDAP server.
By default, the usage of bots to automatically run BOINC jobs is permitted
and encouraged for users who have large computing systems and wish to do
so. All users wishing to become volunteers and allow BOINC to compute on
their devices will be required to pass a CAPTCHA test when signing up for
the very first time.

3. JOB SUBMISSION WORKFLOW

Any researcher or scholar wishing to submit jobs using the BOINC@TACC
framework must possess TACC credentials and a valid allocation. All prospective
users are required to execute the registration script through either Lonestar5 or
Stampede2 before being able to use the web interface. Researcher login is in-
tegrated with TACC’s LDAP server in order to ensure appropriate access to
computer resources.

We maintain a set of Docker images of popular community code (e.g., Autodock-
Vina, GROMACS, NAMD, and OpenSees). A researcher/scholar can choose to
run any of these with their input files/commands on volunteered resources while
interacting with the BOINC@TACC infrastructure through the command-line
interface or through the web interface. A screen-shot of the web interface is
shown in Figure 3, and the scripts for using BOINC@TACC from the command-
line interface have been made available through a Github repository [15].

Additionally, instead of choosing to run the applications whose Docker images
are maintained by us, researchers/scholars can provide any public Docker Hub
image along with the input files/commands to run.

BOINC@TACC also provides an automated process of creating custom Docker
images from the source code for users who do not have existing Docker images of
their custom-written/home-grown code. This process involves using the MIDAS
software component. We support building Docker images of applications written
in C, C++, Fortran, Python, R, and bash. These new images can contain any
number of data files as well. The jobs submitted through the command-line inter-



face on Stampede2/Lonestar5, but not qualified to run on volunteered resources,
are automatically submitted to the SLURM scheduler on Stampede2/Lonestar5.

Fig. 3: Web interface for BOINC job submission.

4. BACKEND WORKFLOW

After job submission, the job information (user information, image used, com-
mands, and input files) is relayed to the BOINC server where any required
pre-processing is done (such as downloading data from a third-party server or
converting the source-code to a Docker image).

The server automatically accesses the images supported by us without requiring
any detailed user input. If a user selects to run a third-party image from Docker
Hub, the BOINC@TACC system will prompt the user to specify appropriate
tags for their jobs. MIDAS jobs - or those jobs for which the user needs help in
generating Docker images - must be specified using a particular syntax. To the
best of our knowledge, no other BOINC project supports the feature of auto-
matically creating Docker images from source-code and user-specifications.

Most BOINC@TACC jobs are processed using the boinc2docker tool and are
made available to the BOINC scheduler directly. The BOINC scheduler selects
an available volunteered device based on the job characteristics, such as the mem-
ory and I/O requirements. The devices running BOINC clients are expected





so that the volunteers can choose the projects that they wish to support more
easily.

5. SCALABILITY

The BOINC@TACC system can elastically scale-up to support HTC jobs by
harnessing the VMs running in the cloud. In comparison to a regular server or
container clusters, the number of jobs run through BOINC@TACC can become
virtually infinite as long as volunteers provide devices to execute the computa-
tion.

All user data and results are stored on a Docker volume mounted on the host
for data persistence. This container can also be run on a different server in order
to reduce the disk space requirements of the main server. Information creden-
tials for passing information between the BOINC server and the storage server
(named as Reef) are not shared directly with the users for security purposes.
Furthermore, all communication and files passed to storage must go through the
BOINC server.

6. CHALLENGES AND LESSONS LEARNT

• Data anonymization: For GDPR Compliance, we initially added a new
column to the MySQL database for storing the anonymized volunteer names.
This created issues related to inconsistent display of volunteer information
across the project website. BOINC recognizes only the default structure of
the MySQL database, which does not contain anonymized names. To fix this
issue, we created a new table that only stores the anonymized user name for
each user’s screen name.

• Emails: Users are sent results attached to an email and a link for fu-
ture downloads is provided. Gmail was used in the early stages but it was
discontinued in favor of GNU Mailman because Gmail has storage limits
and Google can shut-down Gmail accounts that send automated mails to
discourage any spam-related activity.

• VirtualBox installation: It was not possible to use VirtualBox on the
VMs available to us due to a communication issue between the BOINC
client and VirtualBox for running GPU jobs. ADTD-P was created to run
BOINC jobs directly in the VMs without using VirtualBox.

• Nvidia GPU access through Docker: Regular Docker containers do not
have access to an Nvidia GPU even when the necessary drivers and CUDA
services have been installed. As a result, ADTD-P clients were built using
the Nvidia Docker 2 package. This allows containers to run CUDA jobs
without any extra setup, while retaining the same functionality and syntax
of a regular Docker job.



7. LIMITATIONS

One of the main limitations of VC is the volatility in the availability of the volun-
teered resources, and their performance. While the users are guaranteed a certain
level of performance when running applications on supercomputers, they may
experience unpredictable performance when running on volunteered resources.
A lot of the supercomputer users run memory-intensive and IO-intensive appli-
cations which are not a good-fit for the VC environment. A lot of the jobs run
at the supercomputing centers are based on distributed-memory paradigm, and
such jobs are also not a right fit for the VC model.

8. EVALUATION

We are in the process of evaluating the BOINC@TACC project in terms of the
job turnaround time, the number of jobs submitted, the number of jobs that run
successfully, and the number of volunteers and researchers that are interested in
using the project.

As the project is in its early stages of community building, currently, we have
only about 65 volunteers and researchers who are being serviced through the
BOINC@TACC project, and this number will likely increase with future com-
munity building efforts. We have not opened the system to unknown researchers.

We selected popular community code for our testing and evaluation: AutoDock
Vina [16] from the computational biology domain, Opensees [17] from the earth-
quake simulation engineering domain, and three applications from the molecular
dynamics domain - NAMD [18], LAMMPS [19], GROMACS [20]. These ap-
plications were submitted through the BOINC@TACC command-line interface
available on the Stampede2 supercomputer. We also ran these applications di-
rectly on the Skylake nodes on the Stampede2 supercomputer at TACC. The
Skylake nodes are high-end as compared to the processors on the volunteered
resources, and as can be noticed from the data in Table 2, the performance of the
applications on Stampede2 was better than their performance on the volunteered
resources. As we did not experience any queue wait time at the time of running
these test jobs, the job turn-around time on the volunteered resources is longer
than the time on Stampede2. However, the queue wait time on Stampede2 is a
highly unpredictable characteristic that depends upon the other users who are
simultaneously using the system. When Stampede2 is down for maintenance or
has a large back-log of pending jobs, the turn-around time from the volunteered
resources could be shorter than that of Stampede2.



Table 1: Comparing job turn-around time (email sending time not included)

Application

Name

Image

Size

Stampede2

Skylake node
-4 cores requested

BOINC@TACC

Boinc2docker ADTD-P
(VirtualBox in (Jestream cloud

in 4-core volunteer) server, 6 cores, 4 used)

Autodock-Vina 697 MB 30 s 6 min 32 s 8 min 30 s

OpenSees 1.331 GB 5 s 3 min 19 s 10 min 18 s

NAMD 288 MB 5 s 15 min 47 s 3 min 22 s

LAMMPS 1.47 GB 3 s 3 h 14 min 19 s 12 min 13 s

GROMACS 1.27 GB 8 s 3 h 8 min 34 s 11 min 58 s

Table 2: Comparing the computation time spent

Application

Name

Image

Size

Stampede2

Skylake node
-4 cores requested

BOINC@TACC

Boinc2docker ADTD-P
(VirtualBox in (Jestream cloud

in 4-core volunteer) server, 6 cores, 4 used)

Autodock-Vina 697 MB 28 s 5 min 21 s 1 min 9 s

OpenSees 1.331 GB 3 s 2 min 44 s <1 s

NAMD 288 MB <1 s 23 s 2 s

LAMMPS 1.47 GB 3 s 1 min 45 s <1 s

GROMACS 1.27 GB <1 s 1 min 38 s <1 s

9. RELATED WORK

There are multiple VC projects in the community that are using BOINC for
harnessing the power of the donated compute-cycles. These projects are typically
deployed by the research groups for running specific applications to solve very
specific research problems that are related to their interest. Contrary to the
objective of other VC projects in the community that run niche applications,
the BOINC@TACC project is designed to cater to the computing needs of a
wide range of TACC users from different research domains, and hence, supports
running arbitrary applications in Docker containers.

10. FUTURE WORK

All current BOINC logs about submitted jobs are stored in MySQL by the sched-
uler, and in an additional Redis database for internal server mapping. However,
as mentioned above, Redis is an in-memory database and is not designed for large
job logs. Instead, InfluxDB is a better choice for handling large amounts of time-
series data, and will be used in the next iteration of the BOINC@TACC software
release. The Grafana interface [21 ] will also be added to facilitate administra-
tive overview of job statistics. Currently, the main BOINC server automatically
generates the Docker image using the MIDAS client locally. It also packages and
archives all ADTD-P information locally. This could become a problem when



an extremely large set of jobs is submitted, since it becomes a bottleneck to job
processing. In the future software releases, we will improve the scalability of our
software.

11. CONCLUSION

In the paper we presented an introduction to the BOINC@TACC project, and
discussed the advantages of unifying supercomputing with volunteer computing
and cloud computing. We explained that the BOINC@TACC project can po-
tentially help users in supplementing their allocation of compute-time on the
TACC supercomputers, especially because there are roughly 500,000 devices in
the community that are already actively participating in the VC projects. Some
of these devices are equipped with modern GPUs. More than 100 volunteers have
already signed-up for the BOINC@TACC project.

We also discussed the need for harnessing the available computing power through
the cloud computing systems hosted by TACC so that if there is a spike in the
demand for the computing power, or need for special hardware that is not avail-
able on the other volunteered resources, we can still service the jobs submitted
through BOINC@TACC with a reasonable guarantee for the quality of service.
The software infrastructure for the BOINC@TACC project is being iteratively
refined and released to the public. Other supercomputing and cloud computing
service providers can conveniently adapt and adopt the BOINC@TACC software
infrastructure for their environments.

12. ACKNOWLEDGEMENT

The BOINC@TACC project is funded through National Science Foundation
(NSF) award # 1664022. We are grateful to XSEDE, TACC, and the Science
Gateway Community Institute for providing the resources required for imple-
menting this project. We are grateful to David Anderson, Thomas Johnson,
and Anubhaw Nand for contributing to the BOINC@TACC codebase and their
contribution in preparing this paper. Figure 1 was prepared by Thomas John-
son. Several results presented in this paper were obtained using the Chameleon
testbed supported by the NSF and we are grateful to NSF for the same.

13. REFERENCES

[1] Anderson DP (2004) “BOINC: A System for Public-Resource Comput-
ing and Storage”. Fifth IEEE/ACM International Workshop on Grid Com-
puting

[2] BOINC@TACC, website accessed on October 26, http://boinc.tacc.
utexas.edu/



[3] Jetstream, website accessed on October 26, https://use.jetstream-cloud.
org/

[4] Chameleon, website accessed on October 26, https://www.chameleoncloud.
org/

[5] Docker, website accessed on October 26, https://www.docker.com/
[6] Cloud Bursting, website accessed on October 26, https://azure.microsoft.

com/en-us/overview/what-is-cloud-bursting/

[7] GDPR Compliance, website accessed on October 26, https://ec.europa.
eu/info/law/law-topic/data-protection/reform/rules-business-and\

discretionary{-}{}{}organisations_en

[8] Docker Containers, website accessed on October 26, https://www.docker.
com/resources/what-container

[9] Docker Compose, website accessed on October 26, https://docs.docker.
com/compose/overview/

[10] Docker Volumes, website accessed on October 26, https://docs.docker.
com/storage/volumes/

[11] NVIDIA Docker Github Repo, website accessed on October 26, https:
//github.com/NVIDIA/nvidia-docker

[12] ADTD-P Protocol Github Repo, website accessed on October 26, https:
//github.com/noderod/adtd-protocol/blob/master/history.py

[13] BOINC2Docker Github repo, website accessed on October 26, https:
//github.com/marius311/boinc2docker

[14] Science United, website accessed on October 26, https://scienceunited.
org/

[15] BOINCatTACC Github Repo, website accessed on October 26, https:
//github.com/ritua2/BOINCatTACC

[16] Trott O, Olson AJ (2010) “AutoDock Vina: improving the speed and
accuracy of docking with a new scoring function, efficient optimization and
multithreading”. Journal of Computational Chemistry, 31(2): 455–461.

[17] Opensees, website accessed on October 26, http://opensees.berkeley.
edu/

[18] Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E,
Chipot C, Skeel RD, Kale L, and Schulten K (2005) Scalable molecular
dynamics with NAMD. Journal of Computational Chemistry, 26:1781-1802.

[19] Plimpton S (1995) Fast Parallel Algorithms for Short-Range Molec-
ular Dynamics. Journal of Computing Physics, 117:1-19, http://lammps.
sandia.gov

[20] Berendsen HJC, Drunen RV, Spoel DVD (1995) GROMACS: A message-
passing parallel molecular dynamics implementation. Computer Physics Com-
munications, 91:43-56

[21] GRAFANA, website accessed on October 26, http://docs.grafana.
org/features/datasources/influxdb/


	Scalable Software Infrastructure for Integrating Supercomputing with Volunteer Computing and Cloud Computing

